跳到主要内容

数据格式

艾欧数据平台支持灵活的数据格式,可以自定义数据可视化模板。

这里以艾欧数据采集产品采集的数据格式为例:

人类数据格式

文件结构

f"{date}_{project}_{scene}_{task}_{staff_id}_{timestamp}"
├── align_result.csv # 时间戳对齐表格
├── annotation.json # 标注数据
├── config # 相机和传感器配置
│   ├── calib_data.yml
│   ├── depth_to_rgb.yml
│   ├── mocap_main.yml
│   ├── orbbec_depth.yml
│   ├── orbbec_rgb.yml
│   └── pose_calib.yml
└── data.mcap # 多模态数据

多模态数据

library:   mcap go v1.7.0                                              
profile: ros1
messages: 45200
duration: 1m5.625866496s
start: 2025-01-15T18:09:29.628202496+08:00 (1736935769.628202496)
end: 2025-01-15T18:10:35.254068992+08:00 (1736935835.254068992)
compression:
zstd: [764/764 chunks] [6.13 GiB/3.84 GiB (37.39%)] [59.87 MiB/sec]
channels:
(1) /rgbd/color/image_raw/compressed 1970 msgs (30.02 Hz) : sensor_msgs/CompressedImage [ros1msg]
(2) /joint_states 1970 msgs (30.02 Hz) : sensor_msgs/JointState [ros1msg]
(3) /claws_r_hand 1970 msgs (30.02 Hz) : io_msgs/claws_angle [ros1msg]
(4) /global_localization 1970 msgs (30.02 Hz) : geometry_msgs/PoseStamped [ros1msg]
(5) /robot_description 1 msgs : std_msgs/String [ros1msg]
(6) /ee_visualization 1970 msgs (30.02 Hz) : sensor_msgs/CompressedImage [ros1msg]
(7) /rgbd/depth/image_raw 1970 msgs (30.02 Hz) : sensor_msgs/Image [ros1msg]
(8) /colorized_depth 1970 msgs (30.02 Hz) : sensor_msgs/CompressedImage [ros1msg]
(9) /claws_l_hand 1970 msgs (30.02 Hz) : io_msgs/claws_angle [ros1msg]
(10) /claws_touch_data 1970 msgs (30.02 Hz) : io_msgs/squashed_touch [ros1msg]
(11) /touch_visualization 1970 msgs (30.02 Hz) : sensor_msgs/CompressedImage [ros1msg]
(12) /mocap/sensor_data 1970 msgs (30.02 Hz) : io_msgs/squashed_mocap_data [ros1msg]
(13) /mocap/ros_tf 1970 msgs (30.02 Hz) : tf2_msgs/TFMessage [ros1msg]
(14) /left_ee_pose 1970 msgs (30.02 Hz) : geometry_msgs/PoseStamped [ros1msg]
(15) /right_ee_pose 1970 msgs (30.02 Hz) : geometry_msgs/PoseStamped [ros1msg]
(16) /usb_cam_left/mjpeg_raw/compressed 1960 msgs (29.87 Hz) : sensor_msgs/CompressedImage [ros1msg]
(17) /usb_cam_right/mjpeg_raw/compressed 1946 msgs (29.65 Hz) : sensor_msgs/CompressedImage [ros1msg]
(18) /usb_cam_fisheye/mjpeg_raw/compressed 1957 msgs (29.82 Hz) : sensor_msgs/CompressedImage [ros1msg]
(19) /realsense_left_hand/depth/image_rect_raw 1961 msgs (29.88 Hz) : sensor_msgs/Image [ros1msg]
(20) /realsense_left_hand/color/image_raw/compressed 1961 msgs (29.88 Hz) : sensor_msgs/CompressedImage [ros1msg]
(21) /realsense_right_hand/depth/image_rect_raw 1947 msgs (29.67 Hz) : sensor_msgs/Image [ros1msg]
(22) /realsense_right_hand/color/image_raw/compressed 1947 msgs (29.67 Hz) : sensor_msgs/CompressedImage [ros1msg]
(23) /world_left_ee_pose 1970 msgs (30.02 Hz) : geometry_msgs/PoseStamped [ros1msg]
(24) /world_right_ee_pose 1970 msgs (30.02 Hz) : geometry_msgs/PoseStamped [ros1msg]
channels: 24
attachments: 0
metadata: 0
Topic名称数据含义
/mocap/sensor_data基于动作捕捉的关节速度、加速度、角速度、旋转角度和传感器数据
/mocap/ros_tf基于动作捕捉的所有关节的TF
/joint_states基于动作捕捉的所有关节的JointState
/right_ee_pose主头部相机坐标系下的右夹爪位姿
/left_ee_pose主头部相机坐标系下的左夹爪位姿
/claws_l_hand左夹爪闭合程度
/claws_r_hand右夹爪闭合程度
/claws_touch_data夹爪触觉数据(包含两个消息,每个消息的frame_id表示左或右夹爪,data的前四个值有效)
/realsense_left_hand/color/image_raw/compressed左夹爪相机的RGB图像
/realsense_left_hand/depth/image_rect_raw左夹爪相机的深度图像
/realsense_right_hand/color/image_raw/compressed右夹爪相机的RGB图像
/realsense_right_hand/depth/image_rect_raw右夹爪相机的深度图像
/rgbd/color/image_raw/compressed主头部相机的RGB图像
/rgbd/depth/image_raw主头部相机的深度图像
/colorized_depth主头部相机的彩色深度图像
/usb_cam_fisheye/mjpeg_raw/compressed主头部鱼眼相机的RGB图像
/usb_cam_left/mjpeg_raw/compressed主头部左单目相机的RGB图像
/usb_cam_right/mjpeg_raw/compressed主头部右单目相机的RGB图像
/ee_visualization主头部相机RGB图像中的末端执行器位姿可视化
/touch_visualization夹爪触觉数据可视化
/robot_description动作捕捉URDF
/global_localization主头部相机在世界坐标系中的位姿
/world_left_ee_pose左夹爪在世界坐标系中的位姿
/world_right_ee_pose右夹爪在世界坐标系中的位姿

如果是人穿戴着触觉手套采集的数据,会增加触觉数字信号阵列Topic:

/mocap/touch_data 57 msgs (30.25 Hz): io_msgs/squashed_touc [ros1msg]

自然语言标注数据

{
"belong_to": "20250115_InnerTest_PublicArea_TableClearing_szk_180926",
"mocap_offset": [],
"object_set": [
"paper cup",
"placemat",
"trash can",
"napkin",
"plate",
"dinner knife",
"tableware storage box",
"wine glass",
"dinner fork"
],
"scene": "PublicArea",
"skill_set": [
"pick {A} from {B}",
"toss {A} into {B}",
"place {A} on {B}"
],
"subtasks": [
{
"skill": "pick {A} from {B}",
"description": "pick the paper cup from the placemat with the left gripper",
"description_zh": "\u5de6\u5939\u722a \u4ece \u9910\u57ab \u6361\u8d77 \u7eb8\u676f",
"end_frame_id": 227,
"end_timestamp": "1736935777206000000",
"sequence_id": 1,
"start_frame_id": 159,
"start_timestamp": "1736935774906000000",
"comment": "",
"attempts": "success"
},
{
"skill": "toss {A} into {B}",
"description": "toss the paper cup into the trash can with the left gripper",
"description_zh": "\u5de6\u5939\u722a \u6254\u7eb8\u676f\u8fdb\u5783\u573e\u6876",
"end_frame_id": 318,
"end_timestamp": "1736935780244000000",
"sequence_id": 2,
"start_frame_id": 231,
"start_timestamp": "1736935777306000000",
"comment": "",
"attempts": "success"
},
...
],
"tag_set": [],
"task_description": "20250115_InnerTest_PublicArea_TableClearing_szk_180926"
}

遥操作机器人数据格式

文件结构

f"{robot_name}_{date}_{timestamp}_{sequence_id}"
├── RM_AIDAL_250124_172033_0.mcap
├── RM_AIDAL_250124_172033_0.json
├── RM_AIDAL_250126_093648_0.metadata.yaml

多模态数据

Files:             RM_AIDAL_250126_091041_0.mcap
Bag size: 443.3 MiB
Storage id: mcap
Duration: 100.052164792s
Start: Jan 24 2025 21:37:32.526605552 (1737725852.526605552)
End: Jan 24 2025 21:39:12.578770344 (1737725952.578770344)
Messages: 62116
Topic information: Topic: /camera_01/color/image_raw/compressed | Type: sensor_msgs/msg/CompressedImage | Count: 3000 | Serialization Format: cdr
Topic: /camera_02/color/image_raw/compressed | Type: sensor_msgs/msg/CompressedImage | Count: 3000 | Serialization Format: cdr
Topic: /camera_03/color/image_raw/compressed | Type: sensor_msgs/msg/CompressedImage | Count: 3000 | Serialization Format: cdr
Topic: io_teleop/joint_states | Type: sensor_msgs/msg/JointState | Count: 1529 | Serialization Format: cdr
Topic: io_teleop/joint_cmd | Type: sensor_msgs/msg/JointState | Count: 10009 | Serialization Format: cdr
Topic: io_teleop/target_ee_poses | Type: geometry_msgs/msg/PoseArray | Count: 10014 | Serialization Format: cdr
Topic: io_teleop/target_base_move | Type: std_msgs/msg/Float64MultiArray | Count: 10010 | Serialization Format: cdr
Topic: io_teleop/target_gripper_status | Type: sensor_msgs/msg/JointState | Count: 10012 | Serialization Format: cdr
Topic: io_teleop/target_joint_from_vr | Type: sensor_msgs/msg/JointState | Count: 10012 | Serialization Format: cdr
Topic: /robot_description | Type: std_msgs/msg/String | Count: 1 | Serialization Format: cdr
Topic: /tf | Type: tf2_msgs/msg/TFMessage | Count: 1529 | Serialization Format: cdr
Topic名称数据含义
/camera_01/color/image_raw/compressed主相机的RGB图像
/camera_02/color/image_raw/compressed左相机的RGB图像
/camera_03/color/image_raw/compressed右相机的RGB图像
io_teleop/joint_states关节状态
io_teleop/joint_cmd关节命令
io_teleop/target_ee_poses末端执行器目标位姿
io_teleop/target_base_move基座移动目标
io_teleop/target_gripper_status夹爪状态目标
io_teleop/target_joint_from_vrVR设备的关节目标
/robot_description机器人URDF描述
/tfTF空间位姿变换信息

自然语言标注数据

{
"belong_to": "RM_AIDAL_250126_091041_0",
"mocap_offset": [],
"object_set": [
"lemon candy",
"plate",
"pistachios"
],
"scene": "250126",
"skill_set": [
"place {A} on {B}"
],
"subtasks": [
{
"skill": "place {A} on {B}",
"objecta": "lemon candy",
"objectb": "plate",
"options": [
"leftHand"
],
"description": "place the lemon candy on the plate with the left hand",
"end_timestamp": "1737725886915000000",
"sequence_id": 1,
"start_timestamp": "1737725880757000000",
"comment": "",
"attempts": "success"
},
{
"skill": "place {A} on {B}",
"objecta": "pistachios",
"objectb": "plate",
"options": [
"rightHand"
],
"description": "place the pistachios on the plate with the right hand",
"end_timestamp": "1737725950745000000",
"sequence_id": 2,
"start_timestamp": "1737725941657000000",
"comment": "",
"attempts": "success"
}
],
"tag_set": [],
"task_description": "20250205_RM_ItemPacking_zhouxw"
}

模型训练数据

我们提供将上述mcap和json数据转换成python可以解析的数据,用于直接投入大模型的数据训练。

HDF5格式

这里是简单示例,具体根据原始数据和客户定制化需求,输出的训练数据格式会有差异:

/root
├── metadata (Group)
│ ├── creation_time (Attribute)
│ ├── source (Attribute)
│ ├── schema (Dataset)

├── messages (Group)
│ ├── /camera_01/color/image_raw/compressed (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── /camera_02/color/image_raw/compressed (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── /camera_03/color/image_raw/compressed (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── io_teleop/joint_states (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── io_teleop/joint_cmd (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── io_teleop/target_ee_poses (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── io_teleop/target_base_move (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── io_teleop/target_gripper_status (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── io_teleop/target_joint_from_vr (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── /robot_description (Group)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── /tf (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)