Skip to main content

Data Formats

The IO Data Platform supports flexible data formats and customizable data visualization templates.

Here is an example of the data format collected by the IO data acquisition product:

Human Data Format

File Structure

f"{date}_{project}_{scene}_{task}_{staff_id}_{timestamp}"
├── align_result.csv # Timestamp alignment table
├── annotation.json # Annotation data
├── config # Camera and sensor configurations
│   ├── calib_data.yml
│   ├── depth_to_rgb.yml
│   ├── mocap_main.yml
│   ├── orbbec_depth.yml
│   ├── orbbec_rgb.yml
│   └── pose_calib.yml
└── data.mcap # Multimodal data

Multimodal Data

library:   mcap go v1.7.0                                              
profile: ros1
messages: 45200
duration: 1m5.625866496s
start: 2025-01-15T18:09:29.628202496+08:00 (1736935769.628202496)
end: 2025-01-15T18:10:35.254068992+08:00 (1736935835.254068992)
compression:
zstd: [764/764 chunks] [6.13 GiB/3.84 GiB (37.39%)] [59.87 MiB/sec]
channels:
(1) /rgbd/color/image_raw/compressed 1970 msgs (30.02 Hz) : sensor_msgs/CompressedImage [ros1msg]
(2) /joint_states 1970 msgs (30.02 Hz) : sensor_msgs/JointState [ros1msg]
(3) /claws_r_hand 1970 msgs (30.02 Hz) : io_msgs/claws_angle [ros1msg]
(4) /global_localization 1970 msgs (30.02 Hz) : geometry_msgs/PoseStamped [ros1msg]
(5) /robot_description 1 msgs : std_msgs/String [ros1msg]
(6) /ee_visualization 1970 msgs (30.02 Hz) : sensor_msgs/CompressedImage [ros1msg]
(7) /rgbd/depth/image_raw 1970 msgs (30.02 Hz) : sensor_msgs/Image [ros1msg]
(8) /colorized_depth 1970 msgs (30.02 Hz) : sensor_msgs/CompressedImage [ros1msg]
(9) /claws_l_hand 1970 msgs (30.02 Hz) : io_msgs/claws_angle [ros1msg]
(10) /claws_touch_data 1970 msgs (30.02 Hz) : io_msgs/squashed_touch [ros1msg]
(11) /touch_visualization 1970 msgs (30.02 Hz) : sensor_msgs/CompressedImage [ros1msg]
(12) /mocap/sensor_data 1970 msgs (30.02 Hz) : io_msgs/squashed_mocap_data [ros1msg]
(13) /mocap/ros_tf 1970 msgs (30.02 Hz) : tf2_msgs/TFMessage [ros1msg]
(14) /left_ee_pose 1970 msgs (30.02 Hz) : geometry_msgs/PoseStamped [ros1msg]
(15) /right_ee_pose 1970 msgs (30.02 Hz) : geometry_msgs/PoseStamped [ros1msg]
(16) /usb_cam_left/mjpeg_raw/compressed 1960 msgs (29.87 Hz) : sensor_msgs/CompressedImage [ros1msg]
(17) /usb_cam_right/mjpeg_raw/compressed 1946 msgs (29.65 Hz) : sensor_msgs/CompressedImage [ros1msg]
(18) /usb_cam_fisheye/mjpeg_raw/compressed 1957 msgs (29.82 Hz) : sensor_msgs/CompressedImage [ros1msg]
(19) /realsense_left_hand/depth/image_rect_raw 1961 msgs (29.88 Hz) : sensor_msgs/Image [ros1msg]
(20) /realsense_left_hand/color/image_raw/compressed 1961 msgs (29.88 Hz) : sensor_msgs/CompressedImage [ros1msg]
(21) /realsense_right_hand/depth/image_rect_raw 1947 msgs (29.67 Hz) : sensor_msgs/Image [ros1msg]
(22) /realsense_right_hand/color/image_raw/compressed 1947 msgs (29.67 Hz) : sensor_msgs/CompressedImage [ros1msg]
(23) /world_left_ee_pose 1970 msgs (30.02 Hz) : geometry_msgs/PoseStamped [ros1msg]
(24) /world_right_ee_pose 1970 msgs (30.02 Hz) : geometry_msgs/PoseStamped [ros1msg]
channels: 24
attachments: 0
metadata: 0
Topic NameDescription
/mocap/sensor_dataJoint velocity, acceleration, angular velocity, rotation, and sensor data from motion capture
/mocap/ros_tfTF of all joints from motion capture
/joint_statesJointState of all joints from motion capture
/right_ee_poseRight gripper pose in the main head camera coordinate system
/left_ee_poseLeft gripper pose in the main head camera coordinate system
/claws_l_handLeft gripper closure degree
/claws_r_handRight gripper closure degree
/claws_touch_dataGripper tactile data (frame_id indicates left or right gripper, first four values in data are valid)
/realsense_left_hand/color/image_raw/compressedRGB image from the left gripper camera
/realsense_left_hand/depth/image_rect_rawDepth image from the left gripper camera
/realsense_right_hand/color/image_raw/compressedRGB image from the right gripper camera
/realsense_right_hand/depth/image_rect_rawDepth image from the right gripper camera
/rgbd/color/image_raw/compressedRGB image from the main head camera
/rgbd/depth/image_rawDepth image from the main head camera
/colorized_depthColorized depth image from the main head camera
/usb_cam_fisheye/mjpeg_raw/compressedRGB image from the main head fisheye camera
/usb_cam_left/mjpeg_raw/compressedRGB image from the main head left monocular camera
/usb_cam_right/mjpeg_raw/compressedRGB image from the main head right monocular camera
/ee_visualizationEnd-effector pose visualization in the main head camera RGB image
/touch_visualizationGripper tactile data visualization
/robot_descriptionURDF from motion capture
/global_localizationMain head camera pose in the world coordinate system
/world_left_ee_poseLeft gripper pose in the world coordinate system
/world_right_ee_poseRight gripper pose in the world coordinate system

For data collected with tactile gloves, an additional topic is included:

/mocap/touch_data 57 msgs (30.25 Hz): io_msgs/squashed_touc [ros1msg]

Natural Language Annotation Data

{
"belong_to": "20250115_InnerTest_PublicArea_TableClearing_szk_180926",
"mocap_offset": [],
"object_set": [
"paper cup",
"placemat",
"trash can",
"napkin",
"plate",
"dinner knife",
"tableware storage box",
"wine glass",
"dinner fork"
],
"scene": "PublicArea",
"skill_set": [
"pick {A} from {B}",
"toss {A} into {B}",
"place {A} on {B}"
],
"subtasks": [
{
"skill": "pick {A} from {B}",
"description": "pick the paper cup from the placemat with the left gripper",
"end_frame_id": 227,
"end_timestamp": "1736935777206000000",
"sequence_id": 1,
"start_frame_id": 159,
"start_timestamp": "1736935774906000000",
"comment": "",
"attempts": "success"
},
{
"skill": "toss {A} into {B}",
"description": "toss the paper cup into the trash can with the left gripper",
"end_frame_id": 318,
"end_timestamp": "1736935780244000000",
"sequence_id": 2,
"start_frame_id": 231,
"start_timestamp": "1736935777306000000",
"comment": "",
"attempts": "success"
},
...
],
"tag_set": [],
"task_description": "20250115_InnerTest_PublicArea_TableClearing_szk_180926"
}

Teleoperated Robot Data Format

File Structure

f"{robot_name}_{date}_{timestamp}_{sequence_id}"
├── RM_AIDAL_250124_172033_0.mcap
├── RM_AIDAL_250124_172033_0.json
├── RM_AIDAL_250126_093648_0.metadata.yaml

Multimodal Data

Files:             RM_AIDAL_250126_091041_0.mcap
Bag size: 443.3 MiB
Storage id: mcap
Duration: 100.052164792s
Start: Jan 24 2025 21:37:32.526605552 (1737725852.526605552)
End: Jan 24 2025 21:39:12.578770344 (1737725952.578770344)
Messages: 62116
Topic information: Topic: /camera_01/color/image_raw/compressed | Type: sensor_msgs/msg/CompressedImage | Count: 3000 | Serialization Format: cdr
Topic: /camera_02/color/image_raw/compressed | Type: sensor_msgs/msg/CompressedImage | Count: 3000 | Serialization Format: cdr
Topic: /camera_03/color/image_raw/compressed | Type: sensor_msgs/msg/CompressedImage | Count: 3000 | Serialization Format: cdr
Topic: io_teleop/joint_states | Type: sensor_msgs/msg/JointState | Count: 1529 | Serialization Format: cdr
Topic: io_teleop/joint_cmd | Type: sensor_msgs/msg/JointState | Count: 10009 | Serialization Format: cdr
Topic: io_teleop/target_ee_poses | Type: geometry_msgs/msg/PoseArray | Count: 10014 | Serialization Format: cdr
Topic: io_teleop/target_base_move | Type: std_msgs/msg/Float64MultiArray | Count: 10010 | Serialization Format: cdr
Topic: io_teleop/target_gripper_status | Type: sensor_msgs/msg/JointState | Count: 10012 | Serialization Format: cdr
Topic: io_teleop/target_joint_from_vr | Type: sensor_msgs/msg/JointState | Count: 10012 | Serialization Format: cdr
Topic: /robot_description | Type: std_msgs/msg/String | Count: 1 | Serialization Format: cdr
Topic: /tf | Type: tf2_msgs/msg/TFMessage | Count: 1529 | Serialization Format: cdr
Topic NameDescription
/camera_01/color/image_raw/compressedRGB image from the main camera
/camera_02/color/image_raw/compressedRGB image from the left camera
/camera_03/color/image_raw/compressedRGB image from the right camera
io_teleop/joint_statesJoint states
io_teleop/joint_cmdJoint commands
io_teleop/target_ee_posesTarget end-effector poses
io_teleop/target_base_moveTarget base movement
io_teleop/target_gripper_statusTarget gripper status
io_teleop/target_joint_from_vrJoint targets from VR devices
/robot_descriptionRobot URDF description
/tfTF spatial transformations

Natural Language Annotation Data

{
"belong_to": "RM_AIDAL_250126_091041_0",
"mocap_offset": [],
"object_set": [
"lemon candy",
"plate",
"pistachios"
],
"scene": "250126",
"skill_set": [
"place {A} on {B}"
],
"subtasks": [
{
"skill": "place {A} on {B}",
"objecta": "lemon candy",
"objectb": "plate",
"options": [
"leftHand"
],
"description": "place the lemon candy on the plate with the left hand",
"end_timestamp": "1737725886915000000",
"sequence_id": 1,
"start_timestamp": "1737725880757000000",
"comment": "",
"attempts": "success"
},
{
"skill": "place {A} on {B}",
"objecta": "pistachios",
"objectb": "plate",
"options": [
"rightHand"
],
"description": "place the pistachios on the plate with the right hand",
"end_timestamp": "1737725950745000000",
"sequence_id": 2,
"start_timestamp": "1737725941657000000",
"comment": "",
"attempts": "success"
}
],
"tag_set": [],
"task_description": "20250205_RM_ItemPacking_zhouxw"
}

Model Training Data

We provide tools to convert the above mcap and json data into Python-parsable formats for direct use in training large models.

HDF5 Format

Here is a simple example. The output training data format may vary based on raw data and customer-specific requirements:

/root
├── metadata (Group)
│ ├── creation_time (Attribute)
│ ├── source (Attribute)
│ ├── schema (Dataset)

├── messages (Group)
│ ├── /camera_01/color/image_raw/compressed (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── /camera_02/color/image_raw/compressed (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── /camera_03/color/image_raw/compressed (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── io_teleop/joint_states (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── io_teleop/joint_cmd (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── io_teleop/target_ee_poses (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── io_teleop/target_base_move (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── io_teleop/target_gripper_status (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── io_teleop/target_joint_from_vr (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── /robot_description (Group)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)
│ │
│ ├── /tf (Group)
│ │ ├── timestamps (Dataset)
│ │ ├── data (Dataset)
│ │ ├── schema_id (Attribute)